
  

Mathematical Proofs



  

Outline for Today

● How to Write a Proof
● Synthesizing definitions, intuitions, and conventions.

● Proofs on Numbers
● Working with odd and even numbers.

● Universal and Existential Statements
● Two important classes of statements.

● Proofs on Sets
● From Venn diagrams to rigorous math.

● Subsets and Set Equality
● Reasoning about how groups relate.



  

What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.
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What terms are 
used in this proof? 

What do they 
formally mean?
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used in this proof? 
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What does this 
theorem mean? 
Why, intuitively, 

should it be true?
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Writing our First Proof



  

Theorem: If n is an even integer,
then n2 is even.
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Theorem: If n is an even integer,
then n2 is even.



  

An integer n is called even if
there is an integer k where n = 2k.

10

8

0

2 · 5

2 · 4

2 · 0



  

An integer n is called odd if
there is an integer k where n = 2k+1.

11

7

1

2 · 5 + 1

2 · 3 + 1

2 · 0 + 1



  

Going forward, we’ll assume the following:

  1. Every integer is either even or odd.
  2. No integer is both even and odd.



  

Theorem: If n is an even integer,
then n2 is even.
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  Theorem: If n is an even integer, then n2 is even.

22  =  4 = 2 · 2
 

102  =  100 = 2 · 50
  

02  =  0 = 2 · 0
 

(-8)2  =  64 = 2 · 32
 

n2   =   = 2 · ?

Let’s Try Some Examples!

What’s the pattern? 
How do we predict 

this?



  Theorem: If n is an even integer, then n2 is even.

n

Let’s Draw Some Pictures!
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  Theorem: If n is an even integer, then n2 is even.
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Let’s Draw Some Pictures!



  Theorem: If n is an even integer, then n2 is even.

k k

k

k

n2 = 2(2k2)

Let’s Draw Some Pictures!
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Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■
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means “end of 

proof”
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To prove a statement of the form

“If P, then Q”

Assume that P is true, then show that Q 
must be true as well.
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This is the definition of an even 
integer. We need to use this 
definition to make this proof 

rigorous.
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Notice how we use the value of k that we obtained 
above. Giving names to quantities, even if we aren't 

fully sure what they are, allows us to manipulate them. 
This is similar to variables in programs.
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Our ultimate goal is to prove that n2 is even. 
This means that we need to find some m 

such that
n2 = 2m. Here, we're explicitly showing 

how we can do that.



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

Hey, that's what we were trying to show! 
We're done now.
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Our Next Proof



  

Theorem: For any integers m and n,
if m and n are odd, then m + n is even.
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Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Try Some Examples!

    1 + 1 =     2 =  2 · 1
 

137 + 103 =   240 =  2 · 120
 

   -5 + 5 =     0 =  2 · 0
 

   m + n =  2 · ?
What’s the pattern? 
How do we predict 

this?
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Let’s Do Some Math!
k r

2k+1 2r+1



  

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Do Some Math!
k r

2k+1 2r+1

(2k+1) + (2r+1) = 2(k + r + 1)

1
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Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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This is called making arbitrary choices. Rather than 
specifying what m and n are, we’re signaling to the 

reader that they could, in principle, supply any choices of 
m and n that they’d like.

 

By picking m and n arbitrarily, anything we prove about 
m and n will generalize to all possible choices we could 

have made.
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To prove a statement of the form

“If P, then Q”

Assume that P is true, then show that Q must 
be true as well.
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Numbering these equalities lets us refer back 
to them later on, making the flow of the proof 

a bit easier to understand.
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This is a complete sentence! Proofs are expected to be 
written in complete sentences, so you’ll often use 

punctuation at the end of formulas.
 

We recommend using the “mugga mugga” test – if you read 
a proof and replace all the mathematical notation with 
“mugga mugga,” what comes back should be a valid 

sentence.
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odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■



  

Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



  

Universal and Existential Statements



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.
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Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

This result is true for every possible 
choice of odd integer n. It’ll work for n = 1, 

n = 137, n = 103, etc.



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

We aren’t saying this is true for every choice 
of r and s. Rather, we’re saying that 

somewhere out there are choices of r and s 
where this works.



  

Universal vs. Existential Statements

● A universal statement is a statement of 
the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existential statement is a statement of 

the form
There is some x where [some-property] holds for 

x.

● How do you prove an existential statement?



  

Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existential statement of the form
There is an x where [some-property] holds for 

x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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Theorem: For any odd integer n,

there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

Question: Fill in these 
blanks and see if you can 
come up with a pattern 

for why this result is 
true.

Respond at 
pollev.com/zhenglian740



  

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

1 = ___ 2 – ___ 2

3 = 2 2 – 1 2

5 = 3 2 – 2 2

7 = 4 2 – 3 2

9 = 5 2 – 4 2

1 = 1 2 – 0 2

We’ve got a pattern 
– but why does this 

work?



  

k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k



  

k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k

(k+1)2  –  k2  =  2k+1
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Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■
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Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■

We make an arbitrary choice. Rather than specifying 
what n is, we’re signaling to the reader that they could, 

in principle, supply any choice n that they’d like.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■

We’re trying to prove an existential 
statement. The easiest way to do that is to 
just give concrete choices of the objects 

being sought out.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■



  

Let’s take a quick break!



  

Time-Out for Announcements!



  

Reading Recommendations

● We’ve released two handouts online that 
you should read over:
● How to Succeed in CS103
● Guide to Proofs

● Additionally, if you haven’t yet read over 
the Guide to Elements and Subsets, we’d 
recommend doing so.



  

Problem Set 0

● Problem Set 0 went out on Monday. It’s due this 
Friday at 5:30PM.
● Even though this just involves setting up your 

compiler and submitting things, please start this one 
early. If you start things on Friday morning, we can’t 
help you troubleshoot Qt Creator issues!

● There’s a very detailed troubleshooting guide up on 
the CS103 website detailing common fixes. If you’re 
still having trouble, please feel free to ask on EdStem!

● In-person Qt Creator help session this Thursday, 7-9 
PM, in Durand 353 



  

Back to CS103!



  

Proofs on Sets



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).
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Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

This is the element-of relation ∈. It 
means that this object x is one of the 

items inside these sets.



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

What are 
these, again?



  

Set Combinations

● In our last lecture, we saw four ways of 
combining sets together.

● The above pictures give a holistic sense of 
how these operations work.

● However, mathematical proofs tend to 
work on sets in a different way.

S ∪ T S ∩ T S – T S Δ T



  

Important Fact:
 

Proofs about sets almost always focus on 
individual elements of those sets. It’s rare 
to talk about how collections relate to one 

another “in general.”



  

S ∪ T

Set Union

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).
 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).



  

S ∩ T

Set Intersection

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.
 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.
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Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Try Some Examples!
A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

A B

C

Let’s Try Some Examples!

Question: Pick x = 1. 
Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

Now pick x = 2. 
Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

Respond at 
pollev.com/zhenglian740



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

A B

C

1
2

3
4

5

Let’s Try Some Examples!

x = 1

Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

✔ ✘ ✘

✔ ✘ ✘ ✘



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

A B

C

1
2

3

5

Let’s Try Some Examples!

x = 2

Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

✔ ✔ ✘

✔ ✘ ✔ ✘

4



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C
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Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any
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A B
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A ∩ B A B

C
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Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(A ∪ C)

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).
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Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Goal: pick elements 
inside of this 

shape…

...and explain why they 
also have to be in this 

shape.

x

Let’s Draw Some Pictures!



  

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!

If we pick x from the left-
hand diagram, then x is 
in A ∩ B or x is in C (or 

both).



  

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

First, imagine picking 
something from A ∩ B.

x

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

C

x

C

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

C

x

C

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!

A B
A ∩ B A B

C

x

(A ∪ C)

C C



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

C

x

C

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

C

x

C

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

x

C

(B ∪ C)

C

Let’s Draw Some Pictures!



  

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!



  

A B A B

C

(B ∪ C)(A ∪ C)

Otherwise, we have to 
pick from C.

xC

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!
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Theorem: If A, B, and C are sets, then for any

x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B A B

CxC

(B ∪ C)

Let’s Draw Some Pictures!



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■

These are arbitrary choices. Rather than specifying 
what A, B, C, and x are, we’re signaling to the reader 

that they could, in principle, supply any choices of A, B, 
C, and x that they’d like.
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If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.
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This is called a proof by cases (alternatively, a 
proof by exhaustion) and works by showing 

that the theorem is true regardless of what specific 
outcome arises.
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After splitting into cases, it's a good idea to 
summarize what you just did so that the reader 

knows what to take away from it.
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Each of these variables has a 
distinct, assigned value.

 

Each variable was either picked by 
the reader, picked by the writer, or 
has a value that can be determined 

from other variables.



  

Who Owns What?

● The reader chooses and owns a value if you use wording 
like this:
● Pick a natural number n.
● Consider some n ∈ ℕ.
● Fix a natural number n.
● Let n be a natural number.

● The writer (you) chooses and owns a value if you use 
wording like this:
● Let r = n + 1.
● Pick s = n.

● Neither of you chooses a value if you use wording like this:
● Since n is even, we know there is some k ∈ ℤ where n = 2k.
● Because n is odd, there must be some integer k where n = 2k + 1.
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What does
”for any even 242”

mean?
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Every variable needs a value.

Avoid talking about “all x” or “every x”
when manipulating something 

concrete.

To prove something is true for any 
choice of a value for x, let the reader 

pick x.



  

Once you’ve said something like

Let x be an integer.
Consider an arbitrary x ∈ ℤ.

Pick any x.

Do not say things like the following:

This means that for any x ∈ ℤ …
So for all x ∈ ℤ …
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Proofs as a Dialog

Pick two integers m and n where m+n is odd.

Let n = 1, which means that m+1 is odd.

Proof Writer (You) Proof Reader

m = 103

Reader Picks

⚠ ⚠

n = 166

Reader Picks

Hold on! I
already chose
a value for n!
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Proof Writer (You) Proof Reader
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Proofs as a Dialog

Let n = 1.

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader
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Proofs as a Dialog

Let n = 1.

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks

⚠ ⚠

n = 1

Writer Picks



  

Proofs as a Dialog

Let n = 1.

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks

⚠ ⚠

n = 1

Writer Picks

Do we even
need n here?



  

Proofs as a Dialog

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader



  

Proofs as a Dialog

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks



  

Be mindful of who owns what variable.

Don’t change something you don’t own.

You don’t always need to name things, 
especially if they already have a name.



  

Your Action Items

● Read “How to Succeed in CS103.”
● There’s a lot of valuable advice in there – 

take it to heart!
● Read “Guide to ∈ and ⊆.”

● You’ll want to have a handle on how these 
concepts are related, and on how they differ.

● Finish and submit Problem Set 0.
● Don’t put this off until the last minute!



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.



  

Appendix: More Proofs on Sets



  

Proofs on Subsets



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.



  

Conventions
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What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Set Theory Review

● Recall from last time that we write x ∈ S 
if x is an element of set S and x ∉ S if x is 
not an element of set S.

● If S and T are sets, we say that S is a 
subset of T (denoted S ⊆ T) if the 
following statement is true:

For every x, if x ∈ S, then x ∈ T.
● What does this mean for proofs?



  

              T

Subsets

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.

S

S ⊆ T
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What do they 
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What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B

C

A B

C

A ∩ B
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Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B

C

A B

C

A ∩ B

x

Goal: pick elements inside of 
this shape…

...and explain why they also have to 
be in this shape.

Let’s Draw Some Pictures!



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B A B
A ∩ B

C C

Observation: Set C is in both 
of these shapes

Let’s Draw Some Pictures!



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B A B
A ∩ B

C C
x

If we pick x ∈ C on the left, 
then we know that x ∈ C on the 

right.

Let’s Draw Some Pictures!
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A ∩ B

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!



  

A B

C

A B

C

A ∩ B

What happens if we 
pick an x that isn’t in C?

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!
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A ∩ B
x

That means that x is in 
this region up here.

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!
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Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Proof: Pick any sets A, B, and C. Then, choose any element
x ∈ (A ∪ C) ∩ (B ∪ C). We will prove that x ∈ (A ∩ B) ∪ C.

Since x ∈ (A ∪ C) ∩ (B ∪ C), we know that x ∈ A ∪ C and 
that x ∈ B ∪ C. We now consider two cases.

Case 1: x ∈ C. This means x ∈ (A ∩ B) ∪ C as well.

Case 2: x ∉ C. Because x ∈ A ∪ C, we know that x ∈ A
or that x ∈ C. However, since we have x ∉ C, we’re
left with x ∈ A. By similar reasoning, from x ∈ B ∪ C
we learn that x ∈ B.

Collectively, we’ve shown that x ∈ A and that x ∈ B, so 
we see that x ∈ A ∩ B. This means x ∈ (A ∩ B) ∪ C.

In either case, we see that x ∈ (A ∩ B) ∪ C, which is what 
we needed to show. ■
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These are arbitrary choices. Rather than specifying 
what A, B, and C are, we’re signaling to the reader that 
they could, in principle, supply any choices of A, B, and 

C that they’d like.
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To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.

Notice that the statement of the theorem doesn’t include 
any variable named x. We introduced this variable 

because that’s what the definition says to do.
 

This is common in proofwriting. Always call back to 
the definition to make sure you’re proving the right thing!



  

Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Proof: Pick any sets A, B, and C. Then, choose any element
x ∈ (A ∪ C) ∩ (B ∪ C). We will prove that x ∈ (A ∩ B) ∪ C.

Since x ∈ (A ∪ C) ∩ (B ∪ C), we know that x ∈ A ∪ C and 
that x ∈ B ∪ C. We now consider two cases.

Case 1: x ∈ C. This means x ∈ (A ∩ B) ∪ C as well.

Case 2: x ∉ C. Because x ∈ A ∪ C, we know that x ∈ A
or that x ∈ C. However, since we have x ∉ C, we’re
left with x ∈ A. By similar reasoning, from x ∈ B ∪ C
we learn that x ∈ B.

Collectively, we’ve shown that x ∈ A and that x ∈ B, so 
we see that x ∈ A ∩ B. This means x ∈ (A ∩ B) ∪ C.

In either case, we see that x ∈ (A ∩ B) ∪ C, which is what 
we needed to show. ■

As before, it’s good to summarize what we 
established when splitting into cases.
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Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C)  =  (A ∩ B) ∪ C.
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format for writing a proof? 
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S        T

Set Equality

Definition: If S and T are sets, then S = T if
S ⊆ T    and    T ⊆ S.

 

To prove that S = T:
    Prove that S ⊆ T and T ⊆ S.
 

If you know that S = T:
    If you have an x ∈ S, you can conclude x ∈ T.
    If you have an x ∈ T, you can conclude x ∈ S.

S = T
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Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ C.

Proof: Fix any sets A, B, and C. We need to show that

   (A ∪ C) ∩ (B ∪ C) ⊆        (A ∩ B) ∪ C (1)

and that

        (A ∩ B) ∪ C    ⊆   (A ∪ C) ∩ (B ∪ C). (2)

We’ve already proved that (1) holds, so we just need to 
show (2). To do so, pick any x ∈ (A ∩ B) ∪ C. We need to 
prove that (A ∪ C) ∩ (B ∪ C). But this is something we 
already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two 
sets are subsets of one another, and therefore that the sets 
are equal. ■
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It is common for proofs in math to build on 
one another. That’s how we make progress 

and make new discoveries!



  

Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ C.

Proof: Fix any sets A, B, and C. We need to show that

   (A ∪ C) ∩ (B ∪ C) ⊆        (A ∩ B) ∪ C (1)

and that

        (A ∩ B) ∪ C    ⊆   (A ∪ C) ∩ (B ∪ C). (2)

We’ve already proved that (1) holds, so we just need to 
show (2). To do so, pick any x ∈ (A ∩ B) ∪ C. We need to 
prove that x ∈ (A ∪ C) ∩ (B ∪ C). But this is something we 
already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two 
sets are subsets of one another, and therefore that the sets 
are equal. ■


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271

