Mathematical Proofs

Outline for Today

- How to Write a Proof
- Synthesizing definitions, intuitions, and conventions.
- Proofs on Numbers
- Working with odd and even numbers.
- Universal and Existential Statements
- Two important classes of statements.
- Proofs on Sets
- From Venn diagrams to rigorous math.
- Subsets and Set Equality
- Reasoning about how groups relate.

What is a Proof?

A proof is an argument that demonstrates why a conclusion is true, subject to certain standards of truth.

A mathematical proof is an argument that demonstrates why a mathematical statement is true, following the rules of mathematics.

What is the standard format for writing a proof?
What are the techniques for doing so?

Writing our First Proof

Theorem: If n is an even integer, then n^{2} is even.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

Theorem: If n is an even integer, then n^{2} is even.

Theorem: If n is an even integer, then n^{2} is even.

10

8

0

$2 \cdot 5$

$$
2 \cdot 4
$$

$$
2 \cdot \mathbf{0}
$$

An integer n is called even if there is an integer k where $n=2 k$.

11

$2 \cdot 5+1$

$$
2 \cdot 3+\mathbb{1}
$$

$$
2 \cdot \mathbf{0}+\mathbb{1}
$$

An integer n is called odd if there is an integer k where $n=2 k+1$.

Going forward, we'll assume the following:

1. Every integer is either even or odd. 2. No integer is both even and odd.

Theorem: If n is an even integer, then n^{2} is even.

What does this theorem mean? Why, intuitively, should it be true?

Conventions

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: If n is an even integer, then n^{2} is even.

Let's Try Some Examples!

$$
n^{2}
$$

$=2 \cdot$? What's the pattern?
How do we predict this?

Theorem: If n is an even integer, then n^{2} is even.

$$
\begin{aligned}
& 2^{2}=4=2 \cdot 2 \\
& 10^{2}=100=2 \cdot 50 \\
& 0^{2}=0=2 \cdot \mathbf{0} \\
& (-8)^{2}=64=2 \cdot 32
\end{aligned}
$$

Let's Draw Some Pictures!

n

Theorem: If n is an even integer, then n^{2} is even.

Let's Draw Some Pictures!

 $k \quad k$

Theorem: If n is an even integer, then n^{2} is even.

Let's Draw Some Pictures!

 $k \quad k$

Theorem: If n is an even integer, then n^{2} is even.

Let's Draw Some Pictures!

 k k

$$
n^{2}=2\left(2 k^{2}\right)
$$

What is the standard format for writing a proof?
What are the techniques for doing so?

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}$

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}$

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.
Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.
Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.
This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.
Therefore, n^{2} is even. $\square \quad$ This symbol means "end of proof"

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

since n such tha	To prove a statement of the form
This me	"If P, then $Q^{\prime \prime}$
From th m (name	Assume that \boldsymbol{P} is true, then show that \boldsymbol{Q} must be true as well.
Therefor	

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.
This means ti This is the definition of an even ${ }^{2}$). integer. We need to use this definition to make this proof rigorous.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.
This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k
such that $n=2 k$.
This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
Fr
Notice how we use the value of \boldsymbol{k} that we obtained above. Giving names to quantities, even if we aren't fully sure what they are, allows us to manipulate them.

This is similar to variables in programs.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n Proof: Let $n \mathrm{~b}$ | Since ry | $\boldsymbol{n}^{2}=\mathbf{2 m}$. Here, we're explicitly showing |
| :--- | :---: |
| Such th | how we can do that. | This m

From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k This me Hey, that's what we were trying to show! From th We're done now.

Therefore, n^{2} is even.

Our First Proof!

Theorem: If n is an even integer, then n^{2} is even. Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n=2 k$.

This means that $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
From this, we see that there is an integer m (namely, $2 k^{2}$) where $n^{2}=2 m$.
Therefore, n^{2} is even.

Our Next Proof

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

What does this theorem mean? Why, intuitively, should it be true?

Conventions

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Let's Try Some Examples!

$$
\begin{aligned}
& 1+1=2=2 \cdot 1 \\
& 137+103=240=2 \cdot \mathbf{1 2 0} \\
& -5+5=0=2 \cdot \mathbf{0} \\
& m+n \\
& =2 \cdot \text { ? }
\end{aligned}
$$

What's the pattern? How do we predict this?

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Let's Draw Some Pictures!

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Let's Draw Some Pictures!

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Let's Do Some Math!

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Let's Do Some Math!

$2 k+1$

$2 r+1$

$$
(2 k+1)+(2 r+1)=2(k+r+1)
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Proof:

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
m+n=2 k+1+2 r+1
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{aligned}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2
\end{aligned}
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) \tag{3}
\end{align*}
$$

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) \tag{3}
\end{align*}
$$

Equation (3) tells us that there is an integer s (namely, $k+r+1$) such that $m+n=2 s$.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) \tag{3}
\end{align*}
$$

Equation (3) tells us that there is an integer s (namely, $k+r+1$) such that $m+n=2 s$. Therefore, we see that $m+n$ is even, as required.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) \tag{3}
\end{align*}
$$

Equation (3) tells us that there is an integer s (namely, $k+r+1$) such that $m+n=2 s$. Therefore, we see that $m+n$ is even, as required.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

Equation (3) tells us that there is an integer s (namely, $k+r+1$) such that $m+n=2 s$. Therefore, we see that $m+n$ is even, as required.
Numbering these equalities lets us refer back to them later on, making the flow of the proof a bit easier to understand.

$$
\begin{equation*}
m=2 k+1 . \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 . \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) . \tag{3}
\end{align*}
$$

Equation (3) tells us that there is an integer s (namely, $k+r+1$)
such that $m+n=2 s$. Therefore, we see that $m+n$ is even, as
required.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

This is a complete sentence! Proofs are expected to be written in complete sentences, so you'll often use punctuation at the end of formulas.

We recommend using the "mugga mugga" test - if you read a proof and replace all the mathematical notation with "mugga mugga," what comes back should be a valid sentence.

Theorem: For any integers m and n, if m and n are odd, then $m+n$ is even.
Proof: Consider any arbitrary integers m and n where m and n are odd. Since m is odd, we know that there is an integer k where

$$
\begin{equation*}
m=2 k+1 \tag{1}
\end{equation*}
$$

Similarly, because n is odd there must be some integer r such that

$$
\begin{equation*}
n=2 r+1 \tag{2}
\end{equation*}
$$

By adding equations (1) and (2) we learn that

$$
\begin{align*}
m+n & =2 k+1+2 r+1 \\
& =2 k+2 r+2 \\
& =2(k+r+1) \tag{3}
\end{align*}
$$

Equation (3) tells us that there is an integer s (namely, $k+r+1$) such that $m+n=2 s$. Therefore, we see that $m+n$ is even, as required.

Some Little Exercises

- Here's a list of other theorems that are true about odd and even numbers:
- Theorem: The sum and difference of any two even numbers is even.
- Theorem: The sum and difference of an odd number and an even number is odd.
- Theorem: The product of any integer and an even number is even.
- Theorem: The product of any two odd numbers is odd.
- Going forward, we'll just take these results for granted. Feel free to use them in the problem sets.
- If you'd like to practice the techniques from today, try your hand at proving these results!

Universal and Existential Statements

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

This result is true for every possible choice of odd integer n. It'll work for $n=1$,

$$
n=137, n=103, \text { etc. }
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

We aren't saying this is true for every choice of r and s. Rather, we're saying that somewhere out there are choices of r and s where this works.

Universal vs. Existential Statements

- A universal statement is a statement of the form

$$
\text { For all } x \text {, [some-property] holds for } x \text {. }
$$

- We've seen how to prove these statements.
- An existential statement is a statement of the form
There is some x where [some-property] holds for x.
- How do you prove an existential statement?

Proving an Existential Statement

- Over the course of the quarter, we will see several different ways to prove an existential statement of the form
There is an x where [some-property] holds for x.
- Simplest approach: Search far and wide, find an x that has the right property, then show why your choice is correct.

What does this theorem mean? Why, intuitively, should it be true?

Conventions

What is the standard format for writing a proof?
What are the techniques for doing so?

Let's Try Some Examples!

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Let's Try Some Examples!

$$
\begin{aligned}
& 1=\mathbf{1}^{2}-0^{2} \\
& 3=2^{2}-\mathbf{1}^{2} \\
& 5=3^{2}-2^{2} \\
& 7=\mathbf{4}^{2}-3^{2} \\
& 9=5^{2}-4^{2}
\end{aligned}
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Let's Draw Some Pictures!

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Let's Draw Some Pictures!

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
r^{2}-s^{2}=(k+1)^{2}-k^{2}
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2}
\end{aligned}
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2} \\
& =2 k+1
\end{aligned}
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.
Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2} \\
& =2 k+1 \\
& =n .
\end{aligned}
$$

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.
Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2} \\
& =2 k+1 \\
& =n .
\end{aligned}
$$

This means that $r^{2}-s^{2}=n$, which is what we needed to show.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.
Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2} \\
& =2 k+1 \\
& =n .
\end{aligned}
$$

This means that $r^{2}-s^{2}=n$, which is what we needed to show.

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we | know there is some interer k where $n=2 k+$ |
| :--- |
| $\begin{array}{c}\text { We make an arbitrary choice. Rather than specifying } \\ \text { what } \boldsymbol{n} \text { is, we're signaling to the reader that they could, } \\ \text { in principle, supply any choice } \boldsymbol{n} \text { that they'd like. }\end{array}$ |

$$
\begin{aligned}
& =2 k+1 \\
& =n .
\end{aligned}
$$

This means that $r^{2}-s^{2}=n$, which is what we needed to show. \quad

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

Theorem: For any odd integer n, there exist integers r and s where $r^{2}-s^{2}=n$.
Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where $n=2 k+1$.
Now, let $r=k+1$ and $s=k$. Then we see that

$$
\begin{aligned}
r^{2}-s^{2} & =(k+1)^{2}-k^{2} \\
& =k^{2}+2 k+1-k^{2} \\
& =2 k+1 \\
& =n .
\end{aligned}
$$

This means that $r^{2}-s^{2}=n$, which is what we needed to show.

Let's take a quick break!

Time-Out for Announcements!

Reading Recommendations

- We've released two handouts online that you should read over:
- How to Succeed in CS103
- Guide to Proofs
- Additionally, if you haven't yet read over the Guide to Elements and Subsets, we'd recommend doing so.

Problem Set 0

- Problem Set 0 went out on Monday. It's due this Friday at 5:30PM.
- Even though this just involves setting up your compiler and submitting things, please start this one early. If you start things on Friday morning, we can't help you troubleshoot Qt Creator issues!
- There's a very detailed troubleshooting guide up on the CS103 website detailing common fixes. If you're still having trouble, please feel free to ask on EdStem!
- In-person Qt Creator help session this Thursday, 7-9 PM, in Durand 353

Back to CS103!

Proofs on Sets

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

> This is the element-of relation \in. It means that this object x is one of the items inside these sets.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

What are these, again?

Set Combinations

- In our last lecture, we saw four ways of combining sets together.

$S \cup T$

$S \cap T$

S-T

$S \Delta T$

- The above pictures give a holistic sense of how these operations work.
- However, mathematical proofs tend to work on sets in a different way.

Important Fact:

Proofs about sets almost always focus on individual elements of those sets. It's rare to talk about how collections relate to one another "in general."

Set Union

Definition: The set $S \cup T$ is the set where, for any χ : $x \in S \cup T \quad$ when $\quad x \in S$ or $x \in T$ (or both)
To prove that $x \in S \cup T$:
Prove either that $x \in S$ or that $x \in T$ (or both).
If you know that $x \in S \cup T$:
You can conclude that $x \in S$ or that $x \in T$ (or both).

Set Intersection

Definition: The set $S \cap T$ is the set where, for any x :

$$
x \in S \cap T \quad \text { when } \quad x \in S \text { and } x \in T
$$

To prove that $x \in S \cap T$:
Prove both that $x \in S$ and that $x \in T$.
If you know that $x \in S \cap T$:
You can conclude both that $x \in S$ and that $x \in T$.

What does this theorem mean? Why, intuitively, should it be true?

Conventions

What is the standard format for writing a proof?
What are the techniques for doing so?

$$
\begin{aligned}
& \quad \text { Let's Try Some Examples! } \\
& \begin{array}{l}
A=\{1,2,3\} \\
B=\{2,3,4\} \\
C=\{3,4,5\}
\end{array}
\end{aligned}
$$

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Try Some Examples!

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{2,3,4\} \\
& C=\{3,4,5\}
\end{aligned}
$$

Question: Pick $x=1$.
Is $x \in(A \cap B) \cup C$?
Is $x \in(A \cup C) \cap(B \cup C)$?
Now pick $x=2$.
Is $x \in(A \cap B) \cup C$?
Is $x \in(A \cup C) \cap(B \cup C)$?
Respond at
pollev.com/xhenglian740
Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Try Some Examples!

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{2,3,4\} \\
& C=\{3,4,5\}
\end{aligned}
$$

$$
x=1
$$

$$
\text { Is } x \in(A \cap B) \cup C \text { ? }
$$

$$
\text { Is } x \in(A \cup C) \cap(B \cup C) \text { ? }
$$

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Try Some Examples!

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{2,3,4\} \\
& C=\{3,4,5\}
\end{aligned}
$$

$$
x=2
$$

$$
\checkmark \vee x
$$

$$
\text { Is } x \in(A \cap B) \cup C \text { ? }
$$

$$
\text { Is } x \in(A \cup C) \cap(B \cup C) \text { ? }
$$

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

If we pick x from the lefthand diagram, then x is in $\boldsymbol{A} \cap \boldsymbol{B}$ or x is in \boldsymbol{C} (or both).

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof:

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.
Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.
Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.
Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $\mathrm{x} \in \boldsymbol{C}$.
Case 2: $x \in A \cap B$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.
Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $\boldsymbol{x} \in \boldsymbol{A} \cap B$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.
Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $\boldsymbol{x} \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required. \square

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $\boldsymbol{x} \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required. \square

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $\boldsymbol{x} \in \boldsymbol{C}$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in A \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that

In ei If you know that $x \in S \cup T$:
You can conclude that $x \in S$ or that $x \in T$ (or both).
If you know that $x \in S \cap T$:
You can conclude both that $x \in S$ and that $x \in T$.

Case 1: $\boldsymbol{x} \in \boldsymbol{C}$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap B$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.

Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$. Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in \boldsymbol{C}$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $\boldsymbol{x} \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that
$x \in A$ and that $x \quad$ This is called a proof by cases (alternatively, a $x \in A \cup C$ and th In either case, we lear establishes that $x \in(A$
proof by exhaustion) and works by showing that the theorem is true regardless of what specific outcome arises.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary $x \in(A \cap B) \cup C$. We w

Since $x \in(A \cap B) \cup C$, We consider each case

After splitting into cases, it's a good idea to summarize what you just did so that the reader knows what to take away from it.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $\boldsymbol{x} \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.

In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required.

Theorem: If A, B, and C are sets, then for any $x \in(A \cap B) \cup C$, we have $x \in(A \cup C) \cap(B \cup C)$.
Proof: Consider arbitrary sets A, B, and C, then choose any $x \in(A \cap B) \cup C$. We will prove $x \in(A \cup C) \cap(B \cup C)$.

Since $x \in(A \cap B) \cup C$, we know that $x \in A \cap B$ or that $x \in C$. We consider each case separately.

Case 1: $x \in C$. This in turn means that $x \in A \cup C$ and that $x \in B \cup C$.
Case 2: $x \in \boldsymbol{A} \cap \boldsymbol{B}$. From $x \in A \cap B$, we learn that $x \in A$ and that $x \in B$. Therefore, we know that $x \in A \cup C$ and that $x \in B \cup C$.
In either case, we learn that $x \in A \cup C$ and $x \in B \cup C$. This establishes that $x \in(A \cup C) \cap(B \cup C)$, as required. \square

Proofs as a Dialog

Proofs as a Dialog

Let n be an arbitrary odd integer.
Since n is an odd integer, there is an integer k such that $n=2 k+1$.

Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.
Since n is an odd integer, there is an integer k such that $n=2 k+1$.

Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.

Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.
 Now, let $z=k-31$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.
 $$
\text { Now, let } z=k-34
$$

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.

$$
\text { Now, let } z=k-34 \text {. }
$$

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.

$$
\text { Now, let } z=k-34 \text {. }
$$

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.
 Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.
 Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.

Now, let $z=k-34$.

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n=2 k+1$.
 $$
\text { Now, let } z=k-34
$$

Each of these variables has a distinct, assigned value.

Each variable was either picked by the reader, picked by the writer, or has a value that can be determined from other variables.

Now, let z=k-34.

Who Owns What?

- The reader chooses and owns a value if you use wording like this:
- Pick a natural number n.
- Consider some $n \in \mathbb{N}$.
- Fix a natural number n.
- Let n be a natural number.
- The writer (you) chooses and owns a value if you use wording like this:
- Let $r=n+1$.
- Pick $s=n$.
- Neither of you chooses a value if you use wording like this:
- Since n is even, we know there is some $k \in \mathbb{Z}$ where $n=2 k$.
- Because n is odd, there must be some integer k where $n=2 k+1$.

Proofs as a Dialog

Let x be an arbitrary even integer.
Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.
Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.
Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.
Since x is even, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.
Since x is even, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.
Since x is even, we know that $x+1$ is odd.

Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that $x+1$ is odd.

Every variable needs a value.
Avoid talking about "all x" or "every x" when manipulating something concrete.

To prove something is true for any choice of a value for x, let the reader pick x.

Once you've said something like

Let x be an integer. Consider an arbitrary $x \in \mathbb{Z}$. Pick any x.

Do not say things like the following:
This means that for any $x \in \mathbb{Z} \ldots$ So for all $x \in \mathbb{Z} \ldots$

Proofs as a Dialog

Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.
Let $n=1$, which means that $m+1$ is odd.

Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd. Let $n=1$, which means that $m+1$ is odd.

Proofs as a Dialog

Proofs as a Dialog

Proofs as a Dialog

Proofs as a Dialog

$$
\text { Let } n=1
$$

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

Proofs as a Dialog

\triangle

Proofs as a Dialog

$$
\text { Let } n=1 \text {. }
$$

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

$$
\text { Let } n=1
$$

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

$$
\text { Let } n=1
$$

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

Pick any integer m where $m+1$ is odd.

Proofs as a Dialog

Pick any integer m where $m+1$ is odd.

$$
\begin{gathered}
m=166 \\
\text { Reader Picks }
\end{gathered}
$$

Be mindful of who owns what variable.
Don't change something you don't own.
You don't always need to name things, especially if they already have a name.

Your Action Items

-Read "How to Succeed in CS103."

- There's a lot of valuable advice in there take it to heart!
- Read "Guide to \in and \subseteq."
- You'll want to have a handle on how these concepts are related, and on how they differ.
- Finish and submit Problem Set 0.
- Don't put this off until the last minute!

Next Time

- Indirect Proofs
- How do you prove something without actually proving it?
- Mathematical Implications
- What exactly does "if P, then Q " mean?
- Proof by Contrapositive
- A helpful technique for proving implications.
- Proof by Contradiction
- Proving something is true by showing it can't be false.

Appendix: More Proofs on Sets

Proofs on Subsets

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

Set Theory Review

- Recall from last time that we write $x \in S$ if x is an element of set S and $x \notin S$ if x is not an element of set S.
- If S and T are sets, we say that S is a subset of T (denoted $S \subseteq T$) if the following statement is true:

For every x, if $x \in S$, then $x \in T$.

- What does this mean for proofs?

Subsets

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.
To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.
If you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.

What does this theorem mean? Why, intuitively, should it be true?

Conventions

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$. Proof:

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$.
Case 2: $\mathrm{x} \notin C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $\mathrm{x} \notin C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.
Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.
Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$. In either case, we see that $x \in(A \cap B) \cup C$, which is what we needed to show.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.
Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$. In either case, we see that $x \in(A \cap B) \cup C$, which is what we needed to show.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \ldots C$ When

Case
These are arbitrary choices. Rather than specifying what $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are, we're signaling to the reader that
Case they could, in principle, supply any choices of $\boldsymbol{A}, \boldsymbol{B}$, and or \boldsymbol{C} that they'd like.

Collectively, we ve shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$.
In either case, we see that $x \in(A \cap B) \cup C$, which is what we needed to show.

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.
Case Notice that the statement of the theorem doesn't include

This is common in proofwriting. Always call back to the definition to make sure you're proving the right thing! any variable named x. We introduced this variable because that's what the definition says to do.

Theorem: If A, B, and C are sets, then
$(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any set $x \in(A \cup C) \cap(B$

As before, it's good to summarize what we established when splitting into cases.
Since $x \in(A \cup C$ that $x \in B \cup C$.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.
Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$. In either case, we see that $x \in(A \cap B) \cup C$, which is what we needed to show.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C) \subseteq(A \cap B) \cup C$.
Proof: Pick any sets A, B, and C. Then, choose any element $x \in(A \cup C) \cap(B \cup C)$. We will prove that $x \in(A \cap B) \cup C$. Since $x \in(A \cup C) \cap(B \cup C)$, we know that $x \in A \cup C$ and that $x \in B \cup C$. We now consider two cases.

Case 1: $x \in C$. This means $x \in(A \cap B) \cup C$ as well.
Case 2: $x \notin C$. Because $x \in A \cup C$, we know that $x \in A$ or that $x \in C$. However, since we have $x \notin C$, we're left with $x \in A$. By similar reasoning, from $x \in B \cup C$ we learn that $x \in B$.
Collectively, we've shown that $x \in A$ and that $x \in B$, so we see that $x \in A \cap B$. This means $x \in(A \cap B) \cup C$. In either case, we see that $x \in(A \cap B) \cup C$, which is what we needed to show.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

> What is the standard format for writing a proof?
> What are the techniques for doing so?

Set Equality

Definition: If S and T are sets, then $S=T$ if $S \subseteq T$ and $T \subseteq S$.
To prove that $S=T$:
Prove that $S \subseteq T$ and $T \subseteq S$.
If you know that $S=T$:
If you have an $x \in S$, you can conclude $x \in T$. If you have an $x \in T$, you can conclude $x \in S$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

What is the standard format for writing a proof?
What are the techniques for doing so?

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.
Proof:

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2).

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$. But this is something we already know - we proved this earlier.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$. But this is something we already know - we proved this earlier.
Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$. But this is something we already know - we proved this earlier.
Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal.

Theorem: If A, B, and C are sets, then
$(A \cup C) \cap(B \cup C)=$ It is common for proofs in math to build on Proof: Fix any sets A, A one another. That's how we make progress and make new discoveries!
and that

$$
(A \cup C) \cap(B
$$

$$
(A \cap B) \cup C \quad \subseteq(A \cup C) \cap(B \cup C)
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$. But this is something we already know - we proved this earlier.

Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal.

Theorem: If A, B, and C are sets, then $(A \cup C) \cap(B \cup C)=(A \cap B) \cup C$.

Proof: Fix any sets A, B, and C. We need to show that

$$
\begin{equation*}
(A \cup C) \cap(B \cup C) \quad \subseteq \quad(A \cap B) \cup C \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
(A \cap B) \cup C \quad \subseteq \quad(A \cup C) \cap(B \cup C) \tag{2}
\end{equation*}
$$

We've already proved that (1) holds, so we just need to show (2). To do so, pick any $x \in(A \cap B) \cup C$. We need to prove that $x \in(A \cup C) \cap(B \cup C)$. But this is something we already know - we proved this earlier.
Since both (1) and (2) hold, we know that each of these two sets are subsets of one another, and therefore that the sets are equal.

